
METHODS
Our Nasalization/Articulatory Precision (NAP) features 
separately evaluate voiced and unvoiced phonemes 
using two acoustic models that are trained exclusively on 
larger corpora of healthy speech.

Nasalization Model. We train an acoustic model using a 
corpus of healthy, read speech (Panayotov et al., 2015). 
We separate all voiced phonemes into nasal and non-
nasal classes, and train a Gaussian mixture model 
(GMM) to calculate the log-likelihood ratio that a 
phoneme belongs to the nasalization class over the non-
nasalization class. 

Articulatory Precision Model. The articulatory precision 
model computes the precision of unvoiced phonemes, 
similar to (Witt & Young, 2000), as implemented in (Tu et 
al., 2016). This yields a likelihood ratio, computed for 
every unvoiced sound, estimating the precision of each.

Model evaluation: Using a dysarthric speech corpus of 75 
speakers (40 male) exhibiting varying levels of 
hypernasality (38 Parkinson’s disease; 6 Huntington’s 
disease; 16 ataxia; 15 amyotrophic lateral sclerosis). All 
read 5 sentences, for which hypernasality severity ratings 
(7-point scale) were provided by 14 speech language 
pathologists. Model predictions are compared against 
severity ratings.

INTRODUCTION
Hypernasality is a common disordered speech symptom, 
characterized by excessive nasal resonance. It is caused 
by velopharyngeal port dysfunction, an inability to 
properly regulate airflow between the oral and nasal 
cavities. Such modulation requires intact muscle strength 
and precise motor control (Novotny et al., 2016), thus 
hypernasality is exhibited in a variety of neurological 
conditions; automated measures of hypernasality would 
thus prove valuable in neurological clinical settings.

The gold standard in hypernasality assessment is 
clinician opinion ratings (Kent, 1996). While averaging 
multiple subjective ratings improves validity, the practice 
is untenable in most clinical settings.

The acoustic correlates of hypernasality manifest variably, 
challenging development of objective measures. Broadly, 
hypernasality introduces a resonance in the lower 
frequencies (Kummer, 1996) for voiced sounds; for 
unvoiced sounds, hypernasality impacts articulatory 
precision (Woo, 2012). 

We introduce and evaluate a new set of acoustic features 
that leverage the advantages of both approaches, 
following the intuition that increases in hypernasality 
result in two perceptible changes: unvoiced phonemes 
become less precise and voiced phonemes become 
nasalized. 

We evaluate NAP as an input feature to a linear 
regression model, trained to predict speaker 
hypernasality against two others, the best hand-
engineered formant features (Styler, 2015) and an 
MFCC-processing end-to-end neural model (Vikram et 
al., 2018). Two cross validation schemes, “leave one 
speaker out,” (LOSO), and “leave one disease out,” 
(LODO), were employed.

CONCLUSIONS
Results show that NAP features generalize even when 
training on hypernasal speech from one disease and 
evaluating on another disease, and are more predictive 
than both the neural models and hand-engineered models 
in both LOSO and LODO cross-validation (Table 1).

The NAP features achieve consistent performance across 
all LODO classes. This suggests that these features are a 
robust measure of hypernasality, relatively invariant to the 
disease-specific co-modulating variables that hinder the 
performance of other approaches. 

The NAP model has limitations. Its reliance on aligned 
transcripts makes it only useful in a controlled clinical 
setting. Because there are no nasalized voiceless 
phonemes in English to train a nasalization model, we 
instead must use articulatory precision as a proxy for 
hypernasality in voiceless phonemes. Increased 
hypernasality typically implies reduced articulatory 
precision, but the converse is not necessarily true. As such, 
it is possible for speakers to exhibit reduced precision for 
other reasons than hypernasality.

Despite these limitations, NAP features show promise as a 
component in diagnostic hypernasality tracking tools, with 
better predictive performance and generalization than the 
state of the art.
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Fig 2.  An illustration of the proposed hypernasality assessment system.
After forced alignment, voiced phonemes and unvoiced phonemes are
processed using the nasalization and articulation models respectively, 
each of which yield acoustic likelihood ratios with which linear models of  
hypernasality are trained.

Fig 3.  Cross validation results for models predicting clinician hypernasality rating from baseline formant features (FF-KNN) (a), a MFCCs with a neural network (MFCC-
NN) (b), and our features (NAP-Linear) (c), demonstrating how NAP-Linear achieves both higher accuracy and better correlation than either of the baseline approaches.  

FF-KNN (Formant-based features) MFCC-NN (Deep neural network) NAP-Linear (Our features)

Table 1. Evaluation comparison of the NAP features with existing approaches for predicting hypernasality. The input features are “FF,” hand-engineered formant 
features, “MFCC,” Mel frequency cepstral coefficients, and “NAP,” our Nasalization/Articulatory Precision features. The classifiers include “Linear,” simple linear 
regression, “Additive,” additive forward regression, “KNN,” K-nearest neighbor selection, and “NN,” a neural network as defined in (Vikram et al., 2018). MAE represents 
mean absolute error, and PCC is the Pearson correlation coefficient between the predicted nasality scores and the true clinician-assessed nasality scores. LOSO 
denotes “leave one speaker out” cross validation.

Fig 4. (Left) Additive regression results 
predicting clinician rating from (a) a 
subset of the NAP features 
(articulation feature for T, F and 
nasalization feature for IY, B, D) and 
(b) clinician-rated articulatory precision 
alongside a subset, in leave-one-
speaker-out correlation (LOSO).
(b) demonstrates that there are 
hypernasality-correlated qualities in 
the patient speech that go beyond 
general articulatory precision, that are 
captured by the N component of our 
NAP features.(a) (b)


