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Figure 1: A selection of images generated by DALLE-mega, Stable Diffusion 2, DALLE-2, and AltDiffusion,
illustrating their conceptual coverage of “dog,” “airplane,” and “face” across English, Spanish, German, Chinese
(simplified), Japanese, Hebrew, and Indonesian. Coverage of the concepts varies considerably across model and
language, and can be observed in the consistency and correctness of images generated under simple prompts.

Abstract

We propose “Conceptual Coverage Across
Languages” (CoCo-CroLa), a technique for
benchmarking the degree to which any gener-
ative text-to-image system provides multilin-
gual parity to its training language in terms
of tangible nouns. For each model we can as-
sess “conceptual coverage” of a given target
language relative to a source language by com-
paring the population of images generated for a
series of tangible nouns in the source language
to the population of images generated for each
noun under translation in the target language.
This technique allows us to estimate how well-
suited a model is to a target language as well
as identify model-specific weaknesses, spuri-
ous correlations, and biases without a-priori
assumptions. We demonstrate how it can be
used to benchmark T2I models in terms of mul-
tilinguality, and how despite its simplicity it is
a good proxy for impressive generalization.

1 Introduction

Neural text-to-image models convert plain text
prompts into images (Mansimov et al., 2015; Reed
et al., 2016) using internal representations reflec-
tive of the training data population. Advance-
ments in conditional language modeling (Lewis
et al., 2019), variational autoencoders (Kingma and
Welling, 2013), GANs (Goodfellow et al., 2020),
multimodal representations (Radford et al., 2021),
and latent diffusion models (Rombach et al., 2022)
have led to sophisticated text-to-image systems.

These models exhibit impressive semantic gen-
eralization capabilities, enabling them to gener-
ate coherent, visually-appealing images containing
novel combinations of objects, scenarios, and styles
(Ramesh et al., 2021; Saharia et al., 2022). They
have semantic latent spaces (Kwon et al., 2022)
by grounding words to their associated visuals
(Hutchinson et al., 2022). However, character-
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Figure 2: We hypothesize that a model’s ability to gen-
erate creative, compositional images depicting tangible
concepts (e.g., astronaut, horse, soup, bear) is predicated
on its ability to generate simple images of the concepts
alone. Samples from Ramesh et al. (2022).

izing the limits of these systems’ capabilities is a
challenge. They are composed of elements trained
on incomprehensibly large (Prabhu and Birhane,
2020; Jia et al., 2021), web-scale data (Gao et al.,
2020; Schuhmann et al., 2021), hindering training-
data-centric model analysis (Mitchell et al., 2019;
Gebru et al., 2021) to address this problem.

Demonstrations of novel T2I model capabili-
ties tend to rely on the subjective impressiveness
of their ability to generalize to complex, novel
prompts (Figure 2). Unfortunately, the space of
creative prompts is in principle infinite. However,
we observe that impressive creative prompts are
composed of known, tangible concepts.

Can we directly evaluate a model’s knowledge
of these tangible concepts as a partial proxy for its
capability to generalize to creative novel prompts?
Perhaps. But finding a diverse set of significant
failure cases of basic concept knowledge for theses
models is challenging—in their training language.

We observe that when prompted with simple
requests for specific tangible concepts in a con-
strained style, T2I models can sometimes generate
consistent and semantically-correct images in lan-
guages for which they received limited training
(Figure 1, Figure 3). We refer to this capacity as
language-concept possession by said model. At
scale, we can assess the language-concept posses-
sion for a diverse array concepts and languages in
a model to attempt to describe its overall multi-
lingual generalization capability. We refer to the
degree of this capability as the model’s multilingual
conceptual coverage. In this work we:

1. Introduce objective measures of multilin-
gual conceptual coverage in T2I models that
compare images generated from equivalent
prompts under translation (Figure 4).

2. Release CoCo-CroLa, a benchmark set for
conceptual coverage testing for 193 tangible

EN ES ID JA

Figure 3: Although DALL-E mini (Dayma et al., 2021)
is ostensibly trained only on English data, when elicited
with “big dog” in Spanish, Indonesian, and Japanese
it generalizes the “dog” concept to ES and ID, while
exhibiting an offensive concept-level collision in JA.

concepts across English, Spanish, German,
Chinese, Japanese, Hebrew, and Indonesian.

3. Validate the utility of conceptual coverage
analysis of T2I models with a pilot study pro-
viding evidence that generalization to com-
plex, creative prompts is predicated on con-
cept possession.

Our benchmark enables fine-grained concept-
level model analysis, identification of novel failure
modes, and will guide future work in increasing the
performance, explainability, and linguistic parity
of text-to-image models.

2 Motivation & Related Work

This work is an attempt to produce a scalable tech-
nique for characterizing models in terms of con-
ceptual coverage across multiple languages, with
minimal assumptions about the concepts or models
themselves. In this section we lay out our motiva-
tions alongside relevant related work.

Benchmarks enabling model comparability
have been a driving force in the development of
pretrained language models (LM) (Devlin et al.,
2018). For classification and regression tasks, eval-
uation under fine-tuning (Howard and Ruder, 2018;
Karpukhin et al., 2020) is a straightforward and
practical proxy for pretrained LM quality (e.g.,
for encoder-only transformer networks (Liu et al.,
2019)) (Dodge et al., 2020). For these classifica-
tion models, higher performance on benchmark
datasets (Lai et al., 2017; Rajpurkar et al., 2018;
Wang et al., 2019) became the primary target of
LM advancement. However, other important qual-
ities in models including degree of social biases
(Sheng et al., 2019) and robustness (Clark et al.,
2019) arising from biases in training data (Saxon
et al., 2022) can only be captured by more sophisti-
cated benchmarks that go beyond simple accuracy
(Cho et al., 2021). CheckList represented an in-
fluential move in this direction by benchmarking
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Figure 4: CoCo-CroLa assesses the cross-lingual coverage of a concept in a model by plugging all the term
translations into prompt templates, generating a set of images from a model under test, extracting their corresponding
CLIP embeddings, and computing concept-level distinctiveness, coverage, and self-consistency for the concept
with respect to each language. (Anonymized demo available at conceptualcoverage.github.io)

model performance through behavioral analysis
under perturbed elicitation (Ribeiro et al., 2020).

In contrast, generative large language models
(LLMs) such as GPT-3 (Brown et al., 2020) have
a broader range of outputs, use-cases, and capabil-
ities, making evaluation more difficult. For many
text-generative tasks such as summarization and
creative text generation, the crucial desired qual-
ity is subjective, and challenging to evaluate (Xu
et al., 2022). However, as these LLMs operate in a
text-only domain, existing supervised tasks could
be ported to few-shot or zero-shot evaluations of
LLM capabilities (Srivastava et al., 2022). While
performance on these benchmarks isn’t directly in-
dicative of the impressive generative performance
and generalization capabilities, they are a means to
measure improvement (Suzgun et al., 2022).

Text-to-image models are even more difficult
to evaluate than LLMs. Unlike in LLMs, there
aren’t ready-made evaluation tasks that can be
ported over. For example, while GPT-3 was intro-
duced with impressive and sometimes SOTA per-
formance on zero-shot generalization to a suite of
classification tasks, the T2I model DALL-E 2 was
primarily introduced with human opinion scores
and cool demo images (Ramesh et al., 2022).

Multilingual conceptual coverage is a high-
variation T2I model performance setting. (Fig-
ure 1) Perhaps more importantly, it has immediate
value, as work on improving T2I model multilin-
guality has has been proposed, but hampered by a
lack of evaluation metrics.

Chen et al. (2022) introduce AltCLIP and Alt-
Diffusion, models produced by performing multi-
lingual contrastive learning on a CLIP checkpoint
for an array of non-English languages including

Japanese, Chinese, and Korean. Without an objec-
tive evaluation benchmark, they can only demon-
strate their improvement through human evalua-
tion of impressive but arbitrary examples. CoCo-
CroLa improves this state of affairs by enabling
CheckList-like direct comparison of techniques for
reducing multilingual conceptual coverage dispari-
ties as an objective, capabilities-based benchmark.

Excitingly, we find that conceptual coverage is
upstream of the impressive T2I model creativity
that model developers and end-users are fundamen-
tally interested in. This means that not only is
CoCo-CroLa an objective evaluation of T2I system
capabilities, it is also a proxy measure for the
deeper semantic generalization capabilities we
are interested in enhancing in second languages,
as we demonstrate in subsection 5.6.

3 Definitions & Formulations

We define a multilingual concept over languages
L as a set of words in each language carrying the
same meaning and analoguous colloquial use. We
refer to the equivalent translation of concept ck in
language ℓ as ck,ℓ.

Given a set of concepts C, test language ℓ, a min-
imal eliciting prompt1 MPℓ, text-to-image model
f , and a desired number of images-per-concept n,
we sample n|C||L| images Ick,ℓ,i, where

Ick,ℓ,i ∼ f(MPℓ(ck,ℓ)) (1)

For every concept word in the language ℓ ck ∈ C.
Given an image feature extractor F , some sim-

ilarity function L(·, ·), we assess whether f pos-
1We define a minimal eliciting prompt as a short sentence

with a slot for concept work insertion, intended to enforce
style consistency without interfering with the concept.
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SynSet 3: {en: "fixed-wing aircraft", en: aeroplane, ...}

SynSet 6: ...

Figure 5: A diagram of our approach for producing the aligned noun concept list across the target language set using
an ensemble of cloud translation services and BabelNet. Full description of this method in Appendix A.

sesses concept ck,ℓ in the test language if using
the following metrics from the concept-image set
{Ick,ℓ,i}ni=0 (CoCo-CroLa scores in Figure 4):

Distinctiveness. The images are distinct if they
tend to not resemble the population of images gen-
erated for other concepts in the target language.

Formally, we compute the distinctiveness score
Dt(f, ℓ, ck) relative to m images sampled from
other concepts in C:

Dt =
1

mn

m∑
j=0

n∑
i=0

L(F (Ick,ℓ,i), F (Icr,ℓ,s)), (2)

cr,ℓ ∼ C \ ck,ℓ, s ∼ U{0, n} (3)

Self-consistency. The images are self-consistent
if they tend to resemble each other as a set.

Formally, we compute the self-consistency score
Sc(f, ℓ, ck) as:

Sc =
1

n2 − n

n∑
j=0

(
n∑

i=0

L(F (Ick,ℓ,i), F (Ick,ℓ,j))− 1

)
(4)

We subtract 1 from each step in the numera-
tor and n from the denominator so that identical
matches generated image to itself.

Correctness. The images are correct if they faith-
fully depict the object being described.

Rather than assess this using a classification
model (hindering generality depending on the
pretrained classifier), we use faithfulness rela-
tive to a source language ℓs, cross consistency
Xc(f, ℓ, ck, ℓs) as a proxy:

Xc =
1

n2

n∑
j=0

n∑
i=0

L(F (Ick,ℓ,i), F (Ick,ℓs,j)) (5)

Additionally, we use the average text-image sim-
ilarity score of the English concept text against the

set of generated images, for a CLIP image encoder
F and text encoder Ft, Wc:

Wc =
1

n

n∑
i=0

Ft(ck,ℓs) · F (Ick,ℓ,i) (6)

4 Approach

We compute distinctiveness, self-consistency, and
correctness scores across English, Spanish, Ger-
man, Chinese (Simplified), Japanese, Hebrew, and
Indonesian on the models listed in Table 1.

We use a CLIP (Radford et al., 2021) checkpoint
from HuggingFace2 as our semantic visual feature
extractor F , and cosine similarity as our similarity
function L(·, ·). We collect a translation-aligned
concept list C using techniques described in sub-
section 4.1 and depicted in Figure 5. We release our
list generation code, testing code, feature extraction
code, and final concept list as CoCo-CroLa v0.13.

4.1 Translation-aligned concept set collection
We implement an approach to automatically pro-
duce an aligned multilingual concept list, where
meaning, colloquial usage, and connotations are
preserved as well as possible. We identify tangible
nouns describing physical objects, animals, people,
and natural phenomena as a class of concepts that
are both straightforward to evaluate and tend to-
ward relative ubiquity in presence as words across
languages and cultures.

Automated production is desirable for this task,
as it enables the straightforward addition of new
languages to the benchmark. To minimize transla-
tion errors utilize both a large knowledge graph of
terminology and an ensemble of commercial ma-
chine translation systems to produce an aligned con-
cept list (Figure 5). We accept a modest rate of mis-
translations as the price of convenience and scale,

2HF:openai/clip-vit-base-patch32.
3Anon. demo @ conceptualcoverage.github.io
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Model Authors (Year) Repository Training Language

DALL-E Mini Dayma et al. (2021) github:borisdayma/dalle-mini EN
DALL-E Mega
CogView 2 Ding et al. (2021) github:THUDM/CogView ZH
StableDiffusion 1.1 Rombach et al. (2022) HF:CompVis/stable-diffusion-v1-1 EN
StableDiffusion 1.2 HF:CompVis/stable-diffusion-v1-2
StableDiffusion 1.4 HF:CompVis/stable-diffusion-v1-4 No language filter
StableDiffusion 2 HF:stabilityai/stable-diffusion-2
DALL-E 2 Ramesh et al. (2022) openai.com/dall-e-2/ (no checkpoints) No language filter
AltDiffusion m9 Chen et al. (2022) HF:BAAI/AltDiffusion-m9 EN, ES, FR, IT, RU, ZH, JA, KO

Table 1: The set of text-to-image models we evaluated with CoCo-CroLa v0.1. Some monolingual models may
integrate pretrained elements such as CLIP checkpoints that have been trained on multilingual data.
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Figure 6: Histograms of the distribution of correctness cross-consistency (Xc) for each test language for six assessed
models. Rightward probability mass reflects better conceptual coverage.

and analyze some examples of mistranslations,
translation collisions, and their effects. Full de-
tails for our translation pipeline are in Appendix A.

4.2 Making minimal eliciting prompts
As discussed in section 3, an ideal prompt template
would enforce stylistic consistency in the gener-
ated outputs without introducing biases that inter-
fere with the demonstration of concept possession.
Following Bianchi et al. (2022) we build simple
prompts of the form, “a photograph of _____”,
which we manually translate into target languages.
This simple template-filling approach will intro-
duce grammatical errors for some languages. We
briefly investigate if this matters in Appendix B.

4.3 Applying the metrics for analysis
We assess Dt, Sc, Xc, and Wc for each (concept,
language) pair for each model. Using these we
compare models and assess the validity of concep-
tual coverage as a proxy for generalization.

5 Findings

Figure 6 shows histograms for the distributions
of the cross-consistency correctness proxy score
Xc for each concept, relative to the training lan-
guage (either English or Chinese) for DALL-E
Mini, DALL-E 2, CogView 2, Stable Diffusion
1.4, Stable Diffusion 2, and AltDiffusion across the
seven test languages. This plot clearly depicts that
for the primarily English-trained models (DALL-
E Mini, Stable Diffusion 1.4, Stable Diffusion 2),
English-language performance (a high-mean dis-
tribution of high-EN-EN consistency concepts) is
considerably better than the other languages. Simi-
larly, for CogView2, trained on Chinese, the Chi-
nese distribution of ZH-ZH scores is considerably
better than the others, which do equally bad.

DALL-E 2 recieved open-ended multilingual
training, and exhibits more consistent acceptable
performance across the European and East Asian
languages being tested. AltDiffusion, which has
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Figure 7: The correctness score for every (concept, model) pair for (right to left) ES vs DE, ES vs ID, ES vs JA,
and ES vs JA. Languages sharing scripts (ES/DE/ID and JA/ZH) are more correlated than those that don’t (ES/JA).

ES, Rabbit

ID, Guitar

JA, Snow

HE, Eye

ZH, Ticket

EN, Prince

Stable Diffusion 2 DALL-E 2

(a) High-coverage concepts (b) Low-coverage concepts

Figure 8: We automatically identify (a) high-coverage concepts in Stable Diffusion 2 (ES, rabbit), (JA, snow), (ID,
guitar) and (b) low-coverage concepts in DALL-E 2 (EN, prince), (ZH, ticket), (HE, eye) using correctness Xc.

had its CLIP text encoder contrastively trained
against multilingual representations on 9 languages
(including ES, DE, ZH, and JA) exhibits higher
performance on its training languages than its non-
training languages (HE and ID).

Correctness distributions for Spanish, German,
and Indonesian look roughly similar (in terms of
mean and variance) for all models but AltDiffu-
sion. This is particularly interesting because they
are the three non-English languages that also use
the Latin alphabet. Figure 7 compares the correct-
ness Xc score for every concept, in every model,
across pairs of languages that fully or partially
share scripts (ES, DE, ID), (ZH, JA) and two lan-
guages that don’t (JA, ES). Across pairs of lan-
guages that share scripts, there is a high correlation
between possession of a given concept in one lan-
guage and the other. A consistent trend across all
models was poor performance on Hebrew, which is
both considerably lower-resource compared to the
other six test languages, and uses its own unique
writing system.

5.1 Correctness feature captures possession

Figure 8 shows how choosing samples of an image
generated by a model, elicited by a high- or low-
correctness score naturally reveals in which lan-
guages which concepts are possessed (e.g., for Sta-

ble Diffusion 2, ES:rabbit, JA:snow, and ID:guitar
are possessed. When a model possesses a concept,
the outputted images are often visually similar with
the tangible concept set in similar scenarios, and
are.

5.2 Types of concept non-possession

A model not possessing a concept can manifest in
a few different scenarios we identified in Figure 8
(b). DALL-E 2 doesn’t possess “prince” in English
because it outputs a variety of different images, in-
cluding human portrait photos, pictures of pictures,
toys, and dogs. These non-specific error cases are
probably reflective of overall ill-defined concepts.

A second type of possession failure we observe,
we dub specific collisions. For example, Figure 1
and Figure 3 show JA collisions for the DALL-E
mini/mega family. Both models consistently gen-
erate images of humans for “dog” but pictures of
green landscape scenes for “airplane.” While these
generated concepts are incorrect, they represent
an incorrect mapping to a different concept rather
than a mere lack of conceptual possession. We also
observe cases where specific collisions only occur
part of the time, such as in the case of DALL-E 2
and ZH:ticket (Figure 8 (b)).

Finally, we observed cases of generic collisions.
For example, DALL-E 2 consistently generates
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EN ES DE ZH JA HE ID Avg
Model Xc Wc Xc Wc Xc Wc Xc Wc Xc Wc Xc Wc Xc Wc Xc Wc

DALL-E Mega 81 28 65 26 64 26 29 21 32 21 28 19 51 25 50 24
DALL-E Mini 78 27 59 25 50 23 33 21 31 21 34 20 49 24 48 23
SD 1.1 69 26 52 23 46 22 32 19 37 21 28 17 39 21 43 21
SD 1.2 71 26 48 23 44 22 28 19 35 21 24 17 37 21 41 21
SD 1.4 69 26 46 23 40 22 26 20 34 21 24 17 34 21 39 21
SD 2 76 27 54 24 51 24 34 19 31 21 29 17 37 21 45 22
CogView 2 37 20 42 20 39 20 62 25 40 21 38 20 42 20 43 21
DALL-E 2 61 27 55 27 54 26 44 25 42 22 36 19 42 25 48 24
AltDiffusion m9 64 26 59 25 49 22 55 25 55 25 38 20 43 22 52 23
Avg 67 26 53 24 49 23 38 22 38 21 31 18 42 22

Table 2: Correctness scores (Xc and Wc) averaged for all concepts within a column language for all models. Note
that Xc for CogView2 is relative to ZH rather than EN. AltDiffusion performs best in terms of total average Xc,

and number of Xc or Wc column “wins.” DALL-E Mega performs best on Latin languages and avg Wc.

images of desert or Mediterranean scenery when
prompted with “eye” in Hebrew (Figure 8 (b)). This
pattern shows up across a diverse set of models
and prompts. Figure 1 shows how across “dog,”
“airplane,” and “face,” DALL-E mega, Stable Dif-
fusion 2, and DALL-E 2 seem to generate vaguely-
Israel-looking outdoor scenes regardless of elicit-
ing concept. This is probably reflective of a small
sample-size bias in the training data. Hebrew in
general is the prime exhibitor of generic collision
cases in our study.

5.3 Model comparison

Table 2 shows the the use of correctness scores in
the CoCo-CroLa benchmark to compare the 9 mod-
els. As expected, given its multilingual training
regimen, AltDiffusion m9 outperforms the other
T2I models on average, and in terms of total wins.
It is particularly strong relative to the other models
in Japanese and Chinese (with the exception of the
Chinese-only CogView 2, which is best on Chinese
but worst on average overall for both Xc and Wc).

However, despite the strong average perfor-
mance of AltDiffusion, there’s a lot of room for
improvement. For example, its improvements in
terms of JA and HE performance come at a cost of
significantly reduced EN and DE performance rela-
tive to Stable Diffusion 2, its initialization check-
point. The CoCo-CroLa benchmark can guide fu-
ture work in adapting T2I models to further multi-
linguality without losing conceptual coverage on
source languages.

5.4 Distinctiveness captures generic collisions

Figure 9 shows the distribution of the inverse dis-
tinctiveness score Dt. On this plot, more rightward
probability mass indicates a distribution of con-
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Figure 9: Histograms of the inverse distinctiveness
scores for all models and all concepts.

cepts for which distinctiveness is low relative to
a generic sample of images produced by a given
model in that language. The four Latin script lan-
guages (EN, ES, DE, ID) exhibit the lowest inverse
distinctiveness, and are thus the least prone to pro-
ducing generic failure images. Hebrew is an outlier
in terms of concept-level Dt, with a high inverse
distinctiveness.

5.5 Ranking concepts by Xc
For a specific model and language, CoCo-
CroLa can be used as a concept-level analysis tool.
For example, by performing the same ranking over
a specific (model, language) pair, we can find the
most well-covered and poorly-covered concepts
for that pair. For all models and languages, an
interactive ranking demo based on ascending and
descending Xc and Wc is available at (anonymized)
conceptualcoverage.github.io/. For example,
we found “snow” to be a concept possessed in EN
and ES for DALL-E Mega, AltDiffusion, and Sta-
ble Diffusion, but only possessed in JA by Stable
Diffusion 2. Similarly for “dog” and “fire,” but
with respect to AltDiffusion.
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EN ES JA
DA

LL
-E

Me
ga

Concept Xc Wc
bird 0.741 27 ✔

keyboard 0.824 28 ✔

snow 0.787 27 ✔

Concept Xc Wc
bird 0.739 27 ✔

keyboard 0.801 29 ✔

snow 0.723 26 ✔

Concept Xc Wc
bird 0.704 26 ✔

keyboard 0.346 18 ✗

snow 0.404 19 ✗

Al
tD

if
fu

si
on

Concept Xc Wc
bird 0.655 26 ✔

keyboard 0.491 27 ✔

snow 0.759 26 ✔

Concept Xc Wc
bird 0.646 26 ✔

keyboard 0.489 26 ✔

snow 0.704 25 ✔

Concept Xc Wc
bird 0.655 26 ✔

keyboard 0.462 24 ✗

snow 0.671 25 ✔

St
ab

le
Di

ff
us

io
n

2

Concept Xc Wc
bird 0.726 27 ✔

keyboard 0.837 29 ✔

snow 0.846 26 ✔

Concept Xc Wc
bird 0.697 26 ✔

keyboard 0.789 29 ✔

snow 0.818 26 ✔

Concept Xc Wc
bird 0.655 26 ✔

keyboard 0.797 29 ✔

snow 0.808 26 ✔

(a) “a bird using a keyboard in the snow”

EN ES JA

DA
LL

-E
Me

ga

Concept Xc Wc
dog 0.746 26 ✔

fire 0.938 27 ✔

moon 0.868 29 ✔

Concept Xc Wc
dog 0.712 27 ✔

fire 0.926 27 ✔

moon 0.864 28 ✔

Concept Xc Wc
dog 0.298 19 ✗

fire 0.247 19 ✗

moon 0.269 23 ✗

Al
tD

if
fu

si
on

Concept Xc Wc
dog 0.702 26 ✔

fire 0.669 23 ✔

moon 0.704 27 ✔

Concept Xc Wc
dog 0.643 26 ✔

fire 0.658 23 ✔

moon 0.723 28 ✔

Concept Xc Wc
dog 0.677 26 ✔

fire 0.639 23 ✔

moon 0.607 24 ✔

St
ab

le
Di

ff
us

io
n

2
Concept Xc Wc
dog 0.748 26 ✔

fire 0.775 25 ✔

moon 0.756 28 ✔

Concept Xc Wc
dog 0.712 26 ✔

fire 0.620 23 ✔

moon 0.763 29 ✔

Concept Xc Wc
dog 0.582 25 ✔

fire 0.292 20 ✗

moon 0.282 19 ✗

(b) “a dog made of fire standing on the moon”

Figure 10: Cross-model analysis of more complicated, creative prompts combining concepts including “snow,”
“keyboard,” “bird,” “dog,” “fire,” and “moon.” We find that if a model is found to not possess a concept, it will not
be able to produce more complicated prompts including the concept. This validates CoCo-CroLa as an efficient
way to capture an overview of a model’s generalization capabilities.

5.6 Concept possession as a proxy

In this section we will discuss how a lack of cover-
age of a concept implies an inability for a model
to use it in more complex, creative phrases, vali-
dating CoCo-CroLa’s paradigm.

To investigate this we manually translated two
creative prompts including concepts found to be dif-
ferentially present in DALL-E Mega, AltDiffusion,
and Stable Diffusion subsection 5.5 from English
into Spanish and Japanese. The prompts were: “a
bird using a keyboard in the snow,” (ES: “un pá-
jaro usando un teclado en la nieve,” JA: “雪にキー
ボードを使っている鳥”) and “a dog made of
fire standing on the moon,” (ES: “un perro hecho
de fuego pisando en la luna,” JA: “火でできた犬
が月に立っている”).

Figure 10 clearly shows that, using thresholds
for non-possession of Xc < 0.5 and Wc < 25, if a
concept is not possessed by a model according
to CoCo-CroLa, it will be unable to successfully
generate creative images containing it.

However, other capabilities including composi-
tionality and perhaps a sort of verb-level conceptual
possession are probably required in order to make
the converse (possession implies capability to gen-

erate creatively) to be true. This is a promising
direction for future work. This suggests that evi-
dence of concept-level coverage in a model can be
used as a proxy for generalization capabilities to
more complex prompts containing the concept, at
least in the case of tangible noun concepts. This
is good news, as it enables assessment of the in-
finite space of creative prompts from a feasible,
constrained set of concepts.

6 Conclusion

Multilingual analysis of text-to-image models is
desirable for both improving the multicultural ac-
cessibility of T2I systems and deepening our under-
standing of their semantic capabilities and weak-
nesses. Analyzing a model’s conceptual coverage
is a simple and straightforward way to do this.

We demonstrated that these concepts are core
building blocks for producing impressive images,
and that analyzing them is a useful proxy for assess-
ing the truly impressive capabilities of T2I models.

Our technique, CoCo-CroLa is a first step to-
ward further work in this domain. Utilizing our
technique, larger benchmarks containing more lan-
guages and concepts can easily be built.
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Limitations

The CoCo-CroLa benchmark generating procedure
is intended to be a multilingual evaluation that can
be scaled to even larger sets of concepts and lan-
guages without experienced annotators. In the in-
terests of both concept and language quantity scale,
we opted for an automated procedure which lever-
ages machine translation systems, can introduce
translation errors. In subsection 4.1 we describe
how we leverage existing multilingual knowledge
graphs to mitigate mistranslations. However, some
errors still make it through the pipeline. For exam-
ple, “flame” was translated into spanish as “llama”
rather than “flama.” Debugging and reducing errors
of this kind is a direction for future work.

Additionally, typological variation between lan-
guages can introduce complications in applying our
framework. For example, while simple template
filling for prompting is straightforward in Chinese,
which requires no word-dependent articles, in En-
glish phonological properties of the word govern
the preceding article, and in Spanish and German
grammatical gender do the same. Hebrew has gen-
dered nouns, adjectives, and verbs but not articles,
on the other hand. Overall, it appears that these
have limited influence as grammaticality isn’t a
crucial feature in the prediction of image tokens
performed in T2I models, Appendix B.

Ethics Statement

Images of human faces are generated by our model.
To mitigate the minor risk of resemblance to real
people, we have downsampled all images. How-
ever, we believe this risk is mitigated by the lack
of personal names in the querying data. Further-
more, we believe demonstrating that human faces
are generated and under which conditions they are
is important for documentation of bias and harm
risks in these models.

Our data is distributed under the Wikipedia CC
license.

References
Federico Bianchi, Pratyusha Kalluri, Esin Durmus,

Faisal Ladhak, Myra Cheng, Debora Nozza, Tat-
sunori Hashimoto, Dan Jurafsky, James Zou, and
Aylin Caliskan. 2022. Easily accessible text-to-
image generation amplifies demographic stereotypes
at large scale. arXiv preprint arXiv:2211.03759.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye,
Qinghong Yang, and Ledell Wu. 2022. Altclip: Al-
tering the language encoder in clip for extended lan-
guage capabilities. arXiv preprint arXiv:2211.06679.

Hyundong Cho, Chinnadhurai Sankar, Christopher Lin,
Kaushik Ram Sadagopan, Shahin Shayandeh, Asli
Celikyilmaz, Jonathan May, and Ahmad Beirami.
2021. Checkdst: Measuring real-world generaliza-
tion of dialogue state tracking performance. arXiv
preprint arXiv:2112.08321.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer.
2019. Don’t take the easy way out: Ensemble based
methods for avoiding known dataset biases. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4069–4082,
Hong Kong, China. Association for Computational
Linguistics.

Boris Dayma, Suraj Patil, Pedro Cuenca, Khalid Saiful-
lah, Tanishq Abraham, Phuc Le Khac, Luke Melas,
and Ritobrata Ghosh. 2021. Dall·e mini.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou
Shao, Hongxia Yang, and Jie Tang. 2021. Cogview:
Mastering text-to-image generation via transformers.
arXiv preprint arXiv:2105.13290.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020.
Fine-tuning pretrained language models: Weight ini-
tializations, data orders, and early stopping. arXiv
preprint arXiv:2002.06305.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Timnit Gebru, Jamie Morgenstern, Briana Vec-
chione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé Iii, and Kate Crawford. 2021. Datasheets
for datasets. Communications of the ACM, 64(12):86–
92.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2020. Generative
adversarial networks. Communications of the ACM,
63(11):139–144.

9

https://doi.org/10.18653/v1/D19-1418
https://doi.org/10.18653/v1/D19-1418
https://doi.org/10.5281/zenodo.5146400


Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Ben Hutchinson, Jason Baldridge, and Vinodkumar
Prabhakaran. 2022. Underspecification in scene
description-to-depiction tasks. AACL.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen
Li, and Tom Duerig. 2021. Scaling up visual and
vision-language representation learning with noisy
text supervision. In International Conference on
Machine Learning, pages 4904–4916. PMLR.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
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A Mitigating translation errors

Source language term lists. We first produce a
list of English nouns by collating words in term fre-
quency lists extracted from TV closed captions and
contemporary fiction novels from Wiktionary4, and
filter for the 2000 most frequent words in this com-
bined list, and augment it with class label names
from CIFAR100 (Krizhevsky et al., 2009).

Finding good translations. We feed the list En-
glish words into a custom translation pipeline,
which simultaneously queries BabelNet (Navigli
and Ponzetto, 2010), and an ensemble of four
commercial translation systems: Google Translate,
Bing Translate, Baidu Translate, and iTranslate5.

In response to an English query, the BabelNet
API returns a collection of “SynSets,” subgraphs
of a combined multilingual word and entity graphs
centered on a node the query word maps to (see Fig-
ure 5 for examples). Each subgraph links to multi-
ple other nodes, containing terms in both the source
language and the target language. These edges can

4en.wiktionary.org/wiki/Wiktionary:Frequency_
lists/Contemporary_fiction, .../TV/2006/1-1000

5Using the translators PyPi package.

represent, for example, the titles of Wikipedia ar-
ticles in different language editions of Wikipedia
that are marked as being equivalent, thus ensuring
that by checking against SynSet edges, a degree of
human validation is included automatically. The
synset also contains information about whether a
given word is a noun. If it is not a noun, the candi-
date concept is discarded.

To choose the best translation from those edges,
the returned translations into the target languages of
the English term from the commercial translation
services are melded by first sorting all returns by
number of languages in the return query (in the case
that one translation service covers more languages
than others), and filling in missing translations by
prioritizing alignment in the shared language trans-
lations. If any target language is missing a word
for a concept at the conclusion of this process, that
concept is discarded from the final list.

Post-filtering. Once a list of melded translations
from the commercial service is returned, each row
in the candidate aligned concept list is checked
against the corresponding BabelNet SynSets to en-
sure each translation is present as a connected node,
for pseudo-human evaluation. At the end of this
process, a list of approximately 250 concepts is re-
turned. Finally, we manually remove terms that are
verb-noun collisions (e.g. hike) to ensure this am-
biguity didn’t drive any poor translations. The final
list for CoCo-CroLa v0.1 contains 193 concepts.

B Validating the prompt templates

As mentioned in subsection 4.2, the simple
template-based approach to generating prompts for
concepts leads to the introduction of grammatical
errors, e.g. “a photograph of dog.”

However, it is questionable whether small gram-
matical or logical errors like missing articles mat-
ters for high-resourced, well-covered languages
like English. After all, the models are clearly able
to generate high quality “photograph of dog” pic-
tures without the word “a” in the sentence (Figure
1). But, does the prompt phrasing matter for lower-
performance languages in a model? To investigate
the impact of prompt phrasing on conceptual cov-
erage, we tested a variety of English, Spanish and
Chinese prompt phrasings on the concepts “dog,”
“sea,” “airplane,” and “ship” (selected for their wide
distribution across the cross-correlation correctness
metric range).

For the English prompts, we experimented with
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including the articles “a,” “the,” “my,” and “an,”
as well as using the words “photograph,” “image,”
“photo,” and “picture.” For Spanish, we used vari-
ations on the phrase “un foto de” (a photo of), in-
cluding the same set of articles in English “un/una,”
“el/la,” “mi,” “tu,” (your) and “nuestra/o” (our). For
Chinese, we tried examples that both included and
excluded the possessive particle “的” (de), as well
as the words “照片” (zhaopian) and “图片” (tu-
pian) for picture/photograph, and including or ex-
cluding the prepended phrase “一张” (yi zhang) to
create the meaning “one photograph.” We reran the
full 193 concept image generations in those three
languages for Stable Diffusion 2 and AltDiffusion.

We found limited impact across all of
these dimensions. Full details available
in our anonymous demo at (anonymized)
conceptualcoverage.github.io/.
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