Michael Stephen Saxon

Education	Arizona State UniversityTempe, AM.S., Computer Engineering:3.94/4.0Aug 2018 - PreserThesis topic—Representation learning for data-scarce dysarthric speech applicationsAdvisors: Visar Berisha, Ph.D. & Sethuraman Panchanathan, Ph.D.		
	Arizona State University B.S.E., Electrical Engineering; <i>Minor</i> , Mathematics: 3.60/4.0 Honors Thesis —Using Goodness of Pronunciation Features for Spo <i>Advisor: Visar Berisha, Ph.D.</i>	Tempe, AZ Aug 2014 - Aug 2018 oken Nasality Prediction	
Research Interests	Natural language understanding; speech processing, synthesis, and recognition; representation learning; semi-supervised learning; assistive technologies; semantic data mining; AI governance		
PUBLICATIONS	M. Saxon , J. Liss, V. Berisha, "A new model for objective estima dysarthric speech," Workshop on Signal Analytics for Motor Speec Conference 2020, Santa Barbara, CA, February 2020. (Accepted)	· - ·	
	M. Moore, M. Saxon , H. Venkateswara, V. Berisha, S. Panchanath for exploring the error patterns that two ASR engines make," Intersp pp. 2528-2532.		
	M. Saxon, J. Liss, V. Berisha, "Objective Measures of Plosive Nasalization in Hypernasal Speech," 2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, Brighton, UK, 2019, pp. 6520-6524.		
	M. Saxon , S. Bhandari, L. Ruskin, G. Honda, "Word Pair Convolutional Model for Happy Moment Classification," 2 nd Workshop on Affective Content Analysis, AAAI 2019, Honolulu, HI, 2019, pp. 111-119.		
	B. Gupta, M. Saxon , T. McDaniel, S. Panchanathan, "Chat-Box: Proposing a Mood Analyzer for Individuals with Social Interaction Disabilities," International Conference on Human-Computer Interaction, Las Vegas, NV, 2018, pp. 394-401.		
	T. Houghton, M. Saxon , Z. Song, H. Nyugen, H. Jiang and H. Yu, " of a through Silicon Via (TSV) and Solder Ball Interconnect Regio 2016 IEEE 66th Electronic Components and Technology Conference 2016, pp. 2222-2227.	n Using Laser Diffraction"	
Preprints	M. Saxon , A. Tripathi, Y. Jiao, J. Liss, V. Berisha, "Robust Es in Dysarthria," (Under Review, IEEE Trans. on Audio, Speech, arXiv:1911.11360		
Employment Summary	Applied Science Intern, (Alexa Hybrid Science) Pittsburgh, PA Oversaw a research project integrating neural end-to-end spoken lang tent classification for Alexa. Experimented with developing novel semi- methods to generate sequential labels from full-sequence class labels for "semantic endpointing," stopping the forward pass once enough in	-supervised label projection s. Developed architectures	
	Research Engineer Intern Scottsdale, AZ	Aural Analytics Dec 2018 - Apr 2019	

Integrated cloud-based ASR and developed in-house ASR models for integration in a clinical speech assessment product. Explored the design of deployable ASR systems robust to quality reduction under dysarthria.

Graduate Research Assistant	Arizona State University
Tempe, AZ	Aug 2018 - Present
Joint funding from PIs Berisha and Panchanathan (See Publicatio	ons)

REU ParticipantNSF EV-STS @ Arizona State UniversityTempe, AZOct 2017 - May 2018NSF Center for Efficient Vehicles and Sustainable Transportation Systems: Created data ac-
quisition code for synchronous collection of LiDAR and camera image data in C++ with a
corresponding video reconstruction code for part of my Senior Design project. Assisting in the
development of neural network architectures for processing LiDAR data, evaluation methologies,
and principled pre-processing for LiDAR input to neural networks.Embedded Software Engineering InternGeneral Dynamics Mission Systems

Scottsdale, AZ Software-level testing for an FQT release of the HOOK3 Combat Survival Radio; Preparing reports on problems detected during testing and closing PRs; Working on an Agile development team

Undergraduate ResearcherThe Luminosity Lab @ Arizona State UniversityTempe, AZAug 2016 - May 2018Developing software for networked embedded systems; Writing pathfinding algorithms for au-
tonomous drones in Python; Utilizing machine learning to build data analysis models; AI/ML
Working Group Member

TutorEngineering Tutoring Center @ Arizona State UniversityTempe, AZSep 2015 - Sep 2016Working in the Engineering Tutoring Center; Explaining concepts for freshman and sophomorelevel math, science, and electrical engineering classes to students who need help; Answeringquestions and giving homework help

Research Exchange	Hiroshima University May 2018 - Jul 2018 Pose estimation models for Affective Computing with Dr. Toru Tamaki's group, funding provided by Center for Cognitive Ubiquitous Computing.
Skills	Software Proficiencies—Python (Pytorch, Numpy, SciPy, Tensorflow, AllenNLP), BASH, C/C++, OpenCV, Kaldi, MATLAB, Linux, Verilog
	Conceptual —Computational linguistics, DSP, embedded programming, sensor fusion, FPGA development, deep learning, multimedia processing
Selected Coursework	Fundamentals of Statistical Learning—Multimedia Deep Learning—Information Theory—Random Signal Theory—Digital Image/Video Processing and Compression—Speech and Audio Process- ing and Perception—Syntax—Semantics—Numerical Computing—Foundations of Algorithms
Scholarships	ASU Presidential Scholarship - Full Tuition; ASU SMECA (Science, Math, and Engineering Competition Award) - \$20,000; Texas Instruments Scholar Award - \$2,750; W.L. Gore Undergraduate Scholarship - \$3,000; Westwood High School Outstanding Graduate - \$3,000